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1Abstract— The New Millennium Program (NMP) Earth 
Observing 1 (EO-1) satellite was launched November 21, 
2000 as a one year technology validation mission.  After an 
almost flawless first year of operations, EO-1 continued to 
operate in a test bed mode to validate additional 
technologies and concepts that will be applicable to future 
sensor webs.  A sensor web is a group of sensors, whether 
space-based, ground-based or airplane-based which act in a 
collaborative autonomous manner to produce more value 
than would otherwise result from the individual 
observations. 
 
Interestingly, it seems that the trend at this time is to link a 
set of heterogeneous satellites and instruments together in 
an “ad hoc” constellation for a limited period of time to get 
new science products.  In our experiments, we used the 
MODIS instruments on Aqua and Terra to locate terrestrial 
events such as forest fires and then to trigger high-
resolution images of targeted events with either the 
Advance Land Imager (ALI) or Hyperion on EO-1.  To 
achieve this, we created a variety of software on the 
spacecraft and on the ground to coordinate the planning and 
triggering of these images.  Furthermore, it became clear 
from the lessons learned that future sensor webs are going 
to need some key capabilities to enable progressive 
autonomy and sufficient reuse to make these constellation 
cost effective for science.  This paper describes the 
experiments, the lessons learned and the implications for 
future sensor webs. 
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 1. INTRODUCTION 
Sensor webs will greatly enhance future science because 

                                                           
1 U.S. Government work not protected by U.S. copyright. 

they will allow more efficient use of on-orbit assets to 
perform such activities such as catching timely observations 
of transient events.  In the case of EO-1, a low earth 
observing satellite with a polar orbit, each spot on the earth 
can only be seen in the nadir direction once every 16 days.  
Therefore, in order to catch events such as forest fires in 
high resolution, either there would have to be 16 or more 
copies of EO-1 to assure that a timely observation can be 
made or a more intelligent approach can be used whereby a 
low resolution survey instrument such as MODIS, which 
sees all of the earth each day, can detect key events such as 
fire and then alert other assets such as EO-1 to come take a 
closer look. 
 
Interestingly, in the recent California fires, the need for this 
intelligent use of on-orbit assets was demonstrated in late 
October and early November 2003.  The forestry service 
needed quick imagery of burned areas in southern 
California in order to efficiently deploy their assets to 
prevent erosion and mudslides in burned areas, which could 
result from the upcoming rainy season. Figure 1 shows one 
of the EO-1 Advanced Land Imager (ALI) images used by 
the Forestry Service which had been triggered by MODIS.  
Note that if this paper is being viewed in black and white; 
the burn areas highlighted in red will not be visible.  The 
top map embedded in figure 1 is the MODIS active fire map 

Figure 1 - EO-1 Sensor Web triggered ALI image of Simi 
Valley fire 11-2-03.  Color-coding of fire only visible if this 
paper being viewed in color. 
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with the small square within the map representing the area 
subsequently imaged with the high-resolution ALI. 
Figures 2 and 3 show how the Forestry Service makes use 
of this type of imagery.  Figure 2 was a SensorWeb image 
of a fire in Glacier National Park in Montana on August 21, 
2003.  In particular, the Robert fire was being targeted. Note 
that in this figure, the Burned Area Reflectance 
Classification (BARC) map, which was created by the 
Burned Area Emergency Rehabilitation (BAER) team, is 
superimposed on top of the ALI image.  If this paper is 
being viewed in color, one can note that the focus is on the 
red and yellow areas, thus allowing the team to concentrate 
treatment options on high-risk areas.  The images are used 
to contract out work to avoid erosion and the BAER map 
allows classification into the areas more urgently needing 
work.  Since the Forestry Service has limited resources and 
funding, it is essential that recovery assets be used 
efficiently.  Figure 3 depicts members of a BAER team 
assessing fire damage. 
 
Here are comments from Rob Sohlberg from Univ. of 
Maryland and Rob Sauer from the Forestry Service in 

response to the use of a diverse set of space assets including 
the EO-1 sensor web to gather the needed data: 
 
Rob Sohlberg, University of Maryland:  

“Many thanks to all who assisted in rapidly 
pulling together a comprehensive suite of post-fire 
imagery for the wildfires in Southern. Ca. Only by using 
the whole range of available airborne assets and 
spacecraft were we able to provide data for each incident 
in such a short time and with difficult weather conditions. 
 In the end, each sensor has made a unique contribution.” 
 
Rob Sauer, Forestry Service: 

“THANK YOU for all our efforts in providing 
imagery over the last two weeks!  Considering our one L5 
attempt within the window was cloudy and our "issues" 
with SPOT, the imagery from ALI, ASTER, MASTER, 
MAS, and MODIS proved invaluable. Several of the 
incidents only received imagery from these sensors and 
were actually quite pleased with the results”. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – EO-1 Mission Pictorial showing formation 
flying with Landsat, SAC-C and Terra 

 
Figure 2 - EO-1 Sensor Web experiment of 8-21-03 in which MODIS “hot pixels” triggered EO-1 to take high resolution image. 
Image was converted into a Burn Area Reflectance Classification (BARC) map which was used by the Forestry Service Burn Area 
Emergency Rehabilitation team. 
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The key aspect of this observation event that could portend 
things to come is the use of various space assets in ways 
other than that for which they were designed and the 
demonstrated capability to temporarily assemble an “ad 
hoc” constellation to increase the value of imagery collected 
in order to assess transient phenomena.  There were and 
continue to be (as long as funding continues for EO-1) a 
variety of experiments centered around three key 
capabilities to enable sensor webs of the future, mission 
end-to-end messaging capability, progressive mission 
autonomy and plug and play.  All three capabilities overlap 
somewhat and will be covered in sections 3, 4 and 5.   
Section 2 provides a brief EO-1 mission overview and 
background.  Section 5 provides some lessons earned and 
future directions.  Section 6 is the conclusion. 
 
 2. BRIEF EO-1 MISSION OVERVIEW 
The New Millennium Program’s first Earth-observing 
mission (EO-1) is a technology validation mission. It is 
managed by the NASA Goddard Space Flight Center in 
Greenbelt, Maryland and launched in November 2000.  EO-
1 flies in formation with three other satellites in what is 
termed the “Morning Constellation” as depicted in figure 4. 
 The purpose of this mission was to flight-validate 

revolutionary technologies that will contribute to the 
reduction of cost and increase of capabilities for future land 
imaging missions.  For EO-1’s prime mission, there were 
five instrument, five spacecraft, and three supporting 
technologies to flight-validate during a year of operations.   
Following the first year of operations, the EO-1 mission 
entered its extended mission phase in which additional 
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Figure 3 - Sample BAER map overlaid on picture of  Forestry workers assessing fire damage. 
 
 

 
Figure 4 - EO-1 Mission Pictorial showing formation 
flying with Landsat, SAC-C and Terra 
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validations were performed which centered on the theme of 
enabling sensor webs. 
 

3. MISSION END-TO-END MESSAGING 

CAPABILITY 
The key to enabling the easy integration of heterogeneous 
components into a constellation is a messaging system 
whereby any software process can send a message to any 
other software process in the constellation merely by 
knowing the name, a dynamic software bus.  Once this 
messaging system is in place then to set up progressive 
autonomy is more easily enabled since new processes can 
be more easily plugged in even while satellites are on-orbit. 
Instruments can easily coordinate via messages and scripts. 
In our case, we are demonstrating the onboard portion of the 
dynamic software bus via the use of Spacecraft Command 
Language (SCL) installed on EO-1 as a software backplane 
thus enabling other applications to plug in.  In particular, we 
have begun to test CASPER onboard EO-1, which is an 
onboard planner.  Figure 5 and 6 depict the architecture of 
this experiment.   Figure 5 shows how SCL acts as the 
middleware to transform the existing software bus into a 
rudimentary dynamic software bus.  The key difference 
between a software bus, which was built into EO-1, and a 
dynamic software bus is that both can send messages by 
name to any other process on the bus.  However, the 
dynamic software bus can easily add new processes that can 
then be named and have messages sent to that process.  This 
is a first step towards “plug and play” and would allow 
easier constellation resource management.  Figure 7 shows 
conceptually how we integrated the SCL and CASPER into 
the existing flight SW architecture. 
 
 4.  PROGRESSIVE MISSION AUTONOMY 
For “ad hoc” constellations, the ability to easily link the 
assets, provide coordinated planning and augment the 
operations procedures whether flight or ground software 

needs to be added is essential.  By adding both CASPER 
and SGM, we were able to conduct a whole host of 
experiments ranging from triggering via MODIS 
observations to cause an EO-1 observation, to our present 
endeavor which is to make some real time decisions using 
GOES active cloud cover detection to choose alternate 
scenes if one target is too cloudy.  As the library of scripts 
increases, modifications of new operational scenarios have 
been getting easier.  In Figure 8, see the operational 
scenario for the EO-1 Sensor Web forest. fires.  There are 
similar scenarios for volcanic activity [2] and flood 
detection[3].  Figure 9 illustrates a conceptual diagram for 
implementation for a higher level of plug and play 
architecture for Sensor Webs. Figure 10 shows the funded 
tasks on the EO-1 testbed. 

 

 5.  PLUG AND PLAY 
Although the SCL/CASPER/SGM augmentation of EO-1 
provided some degree of flexibility including a first step in 
“plug and play”, it became clear that there were two key 
obstacles that would prevent easy development of future 
sensor webs.  First, most projects are reticent to make 
changes on-orbit for fear that essential functionality would 
be inadvertently compromised.  EO-1 has two Mongoose 
processors, each with 256 Mbytes of memory.  We 
therefore could isolate our onboard dynamic software bus 
into an essential and non-essential bus thus isolating new 
experiments from core functionality via a “firewall” which 
was the SCL software bridge.  Secondly, even though the 
use of SCL as middleware-enhanced modifications needed 
to plug CASPER onto EO-1, it was still not trivial to uplink 
and install CASPER without a significant amount of work.  
Figure 9 is the proposed next step whereby flight SW is 
loaded through the command link and begins to operate 
without rebooting the onboard computer as must be done 
with the SCL/CASPER method.  The best analogy is the 
USB devices, which plug into desktop PC’s, self configure 
and automatically begin to operate. We presently have a 

 

 
Figure 5 - Mission-messaging architecture so that messages can be passed from any process to any other process via naming 
convention similar to Internet 
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proposal that could demonstrate that capability on EO-1 if 
funding is located. 

. 

Dan Mandl is presently the EO-1 Mission Director and the 
Ground Systems Manager for ST-5.  Mr. Mandl led EO-1 
through a flawless first year of technology validation 
operations and spearheaded an effort to convert EO-1 into 
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Figure 7 - Augmented software architecture using SCL as middleware to create an onboard dynamic software bus on the 

Wideband Advanced Recorder Processor (WARP) Mongoose, one of two Mongoose processors on EO-1. 
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an on-orbit test bed after the first year.  Due to all of the 
streamlining in operations which included setting up a 
partnership with USGS to sell EO-1 imagery after the first 
year and exceeding expected results through the use of EO-
1 as a test bed, the EO-1 team was awarded the NASA 
Continuous Improvement Award.  He is also the PI on a 
winning proposal to NASA Earth Science Technology Office 
(ESTO) to investigate techniques to create hybrid ground 
phased array antennas to lower the cost of antennas used to 
communicate to satellites and the PI on a recently 
completed investigation awarded by ESTO to demonstrate 
onboard cloud cover assessment using EO-1.   Previously, 
he was the TRACE Ground System Development lead.  His 
other jobs have included being the Small Explorer Control 
Center Systems Manager, a developer on other various 
missions such as COBE, GRO, UARS and EUVE.  He has a 
BSEE from Univ. of MD and a Master’s of Engineering 
Management from George Washington University. 
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Figure 8 - EO-1 Sensor Web Fire Detection Operations Scenario Diagram from 8-21-03; Robert's Fire in 
Montana 
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Figure 9 - Conceptual diagram to implement the higher level of plug and play for a sensor web. 
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6. CONCLUSION 
 

The effort to construct a collaborative sensing system using 
heterogeneous satellites led to a different conclusion than 
might have been expected for future constellations.  
Typically, one would expect that software reuse will be a 
big factor in making future constellations cost-effective.  
However, to get enough “economy of scales”, it may not be 
enough to have reuse within one organization by 
standardizing all of the engineering tools and internal reuse 
software libraries.  Therefore standardizing on a messaging 
backplane, which allows interoperability may provide the 
capability to have “plug and play” components, which can 
leverage the effort of many organizations. 
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